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Abstract—Statistical timing analysis for manufacturing vari-

ability requires modeling of spatially-correlated variation. Com-
mon grid-based modeling for spatially-correlated variability in-
volves a trade-off between accuracy and computational cost,
especially for PCA (principal component analysis). This paper
proposes to spatially interpolate variation coefficients for im-
proving accuracy instead of fining spatial grids. Experimental
results show that the spatial interpolation realizes a continuous
expression of spatial correlation, and reduces the maximum error
of timing estimates that originates from sparse spatial grids For
attaining the same accuracy, the proposed interpolation reduced
CPU time for PCA by 97.7% in a test case.

I. INTRODUCTION

For coping with aggravation of manufacturing variability,
stochastic performance estimation before fabrication has been
eagerly demanded, and statistical static timing analysis (SSTA)
has been intensively studied [1]–[4]. Delay times are expressed
in statistical distributions, and signal arrival times are com-
puted statistically. With SSTA, a relation between performance
and yield can be predicted before fabrication.

For implementing SSTA, variability models of gates and
interconnects are necessary. Manufacturing variability is often
decomposed into die-to-die, within-die spatially-correlated,
and random components [5]. Among these components, the
within-die spatially-correlated component is the least tractable,
since a large number of random variables and their covariance
matrix are necessary to take it into account, which severely
limited the analyzable circuit size in the past [4]. Later on,
reference [2] proposed SSTA that models spatially-correlated
component using a 2-D grid. The authors translate correlated
random variables into uncorrelated random variables by PCA
(principal component analysis), and improve SSTA efficiency.
Another approach is a modeling with quad-tree proposed in
[6]. Both approaches have different advantages and disadvan-
tages [7], however they share the same issue, that is the trade-
off between accuracy and computational time required for
modeling. When the number of spatial division increases, the
spatially-correlated component is well reproduced, however it
involves unwanted increase in computational time.

This paper presents a technique that mitigates discretization
error by spatially interpolating coefficients of principal com-
ponents in PCA-based SSTA [2]. The interpolation enables a
continuous expression of correlation even when the grid-based
modeling is used for spatially-correlated variability.

This paper is organized. Section II discusses the con-
ventional grid-based model of manufacturing variability, and
points out its problem. Section III presents accuracy enhance-
ment of the grid-based model using coefficient interpolation.
Experiments in Section IV demonstrate improvement of SSTA
accuracy. The discussion is concluded in Section V.
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Fig. 1. Within-chip variability.

II. PROBLEM OF GRID-BASED VARIABILITY MODEL

This section explains a grid-based spatially-correlated vari-
ability modeling used in SSTA, and demonstrates its problem.

A. Grid-based modeling of spatially-correlated manufacturing
variability

Variation of a parameter that affects delay (F ), e.g. gate
length and threshold voltage, is often expressed as

F = f0 + Xg + Xs + Xr, (1)

where f0 is the average value of F , and Xg, Xs, and Xr are
random variables whose average is 0. Xg represents die-to-
die variability, and it fluctuates uniformly within a chip. All
elements on a single chip has the same value in terms of die-
to-die variability. In contrast, Xs and Xr represent within-chip
variability, and elements within a chip have different values.

The within-chip variability consists of spatially-correlated
variation Xs and random variation that differs element by
element Xr (Fig. 1). Xs has stronger correlation between
neighboring elements, and the correlation decreases as the dis-
tance increases, whereas Xr fluctuates randomly independent
of other elements. With Xs component, relative placement of
elements affects correlation between the element delays.

To take the spatially-correlated variability into SSTA, a
model that can reproduce the variability with a reasonable
accuracy is necessary. Reference [2] proposes a SSTA that
takes the spatially-correlated manufacturing variability into
consideration using PCA. We here explain how the variability
is modeled in [2]. We first divide a chip spatially. Spatially-
correlated component Xs is discretized in a 2-D grid, and a
random variable is assigned to each region. Within a region,
the variability is assumed to be identical. After the variable
assignment, a correlation coefficient matrix is constructed, and
PCA is applied to the matrix. Random variable pi in region i
is expressed as a sum of orthogonalized variable p′j .

pi = μi + σi

m
∑

j=1

√

λjvijp
′
j , (2)

where μi is the average of pi, σi is the standard deviation of pi,
λj is the j-th largest eigenvalue of the correlation coefficient
matrix, vij is the i-th value of the eigenvector corresponding
to λj , and m is the number of the principal components.

���	
	����	���
	����������������� ���

Authorized licensed use limited to: Masanori Hashimoto. Downloaded on May 11,2010 at 07:59:09 UTC from IEEE Xplore.  Restrictions apply. 



2

� �

�

Fig. 2. An example that discretization
causes a significant error.

TABLE I
CPU TIME REQUIRED FOR PCA.

Grid CPU time (sec)
20 × 20 0.33
30 × 30 4.31
40 × 40 24.2
50 × 50 92.86
60 × 60 306.09

Applying the above grid-based modeling to F in Eq. (1),
F is expressed as a linear summation of uncorrelated random
variables.

F = f0 +
n

∑

j=1

kijxj + δ, (3)

where xj is the uncorrelated random variable whose average
and standard deviation are 0 and 1, respectively, and it includes
p′j in Eq. (2) and die-to-die variation component. kij is the
coefficient of xj in region i, and δ corresponds to random
component Xr.

B. Error due to discretization
Correlation coefficient between two elements continously

changes in space by nature, while the grid-based model
incurs discretization error inevitably. Figure 2 illustrates two
examples of the discretization error. When elements A and
B are placed adjacently, they often have a strong correlation.
However, there is a grid boundary between them, and hence
different random variables are assigned for them. Conse-
quently, the modeled correlation becomes weaker than the
actual one. On the other hand, though elements A and C are
placed distantly, they belong to the same region, and hence
the correlation coefficient between them is modeled as one. In
this case, the modeled correlation is stronger than the actual
one.

These errors due to discretization are significant especially
when the number of discretized regions is small, because
the size of each region becomes larger, and the correlation
between adjacent two regions becomes weaker. In fact, to
model spatially-correlated variability accurately, finer spatial
discretization is necessary, which will be shown in Section IV.

C. Computational cost
The finer grid improves the modeling accuracy, however

the lager number of random variables increases CPU times of
PCA and SSTA.

The computational complexity of PCA used in modeling
is O(n3), where the number of regions is n [2]. Table I
lists CPU time for PCA that was performed using R [9]
on a computer with Opteron 2.4GHz processor and 16GB
memory. As the number of discretized regions increases, the
required CPU time increases drastically. Memory usage is also
a problem, since the memory space of O(n2) is necessary to
store the correlation coefficient matrix. The CPU time of SSTA
is proportional to the number of principal components [2].

This CPU time problem becomes severer especially when
the chip area is large and the correlation distance is small. CPU
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Fig. 3. Interpolation for point A.
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Fig. 4. Variance compensation.

time increases when more accurate analysis is necessary, and
the accuracy degrades when CPU time is saved vice versa.
Taking the trad-off between CPU time and accuracy, we have
to model the spatially-correlated variability with a reasonable
discretization.

III. ACCURACY ENHANCEMENT BY INTERPOLATING
PRINCIPAL COMPONENT COEFFICIENTS

To solve the problems pointed out in Section II, we propose
to use spatial interpolation for expressing continuous change
of correlation and mitigating the discretization error. We
interpolate principal component coefficient kij in Eq. (3) using
two interpolation techniques that are often used for image
processing; bilinear and bicubic interpolations [8].

We here explain the coefficient interpolation via bilinear
interpolation as an example. Dotted lines in Figure 3 repre-
sent grid boundaries, and here let us compute coefficient kj

corresponding to an element at point A. Bilinear interpolation
uses values at neighboring four points.

kj = (1 − Δx)(1 − Δy)k(ix,iy)j + Δx(1 − Δy)k(ix+1,iy)j

+(1 − Δx)Δyk(ix,iy+1)j + ΔxΔyk(ix+1,iy+1)j . (4)

Δx and Δy represent horizontal and vertical distances from
the center of region (ix, iy)(= (1, 1) in Fig. 3) where point
A is included, respectively. The distance between adjacent
regions is normalized to one, and then 0 ≤ Δx,Δy ≤ 0.5.

When simply interpolating coefficients using Eq. (4), the
variance after the interpolation becomes smaller. Figure 4
illustrates the reason. Suppose a and b are coefficient vectors
(ki0, ki1, ..., kin) and (k(i+1)0, k(i+1)1, ..., k(i+1)n), and we
interpolate a and b for simplicity, though bilinear interpo-
lation uses four vectors. The norm of the interpolated vector
||ra+(1− r)b||, where r is a weighting factor determined by
distance, becomes smaller than the correct value, which leads
to underestimation of variance.
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Fig. 5. Correlation coefficient in conventional grid-based model.
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Fig. 6. Correlation coefficient
with bilinear interpolation.
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Fig. 7. Correlation coefficient
with bicubic interpolation.

TABLE II
RMS ERROR OF CORRELATION COEFFICIENT.

Model RMS error
grid 0.0893

bilinear 0.1031
bicubic 0.0573

We therefore compensate the underestimation by multiply-
ing a constant to the coefficient interpolated by Eq. (4).

k′
j = kj · σorg

√

∑n
i k2

i

. (5)

σorg is the standard deviation before the interpolation, and k′
j

is the coefficient after compensating the variance.
In the case of using bicubic interpolation, values at neigh-

boring 16 points are used for interpolation [8]. The com-
pensation of the variance (Eq. (5)) is similarly performed
after the interpolation, though the detailed expression of the
interpolation is omitted due to space limitation.

From now, we will demonstrate the error of correlation
coefficients is reduced by the proposed coefficient interpola-
tion. Referring to a variability in a 90nm technology [10], we
assumed that the correlation coefficient of spatially-correlated
variability was dependent on distance, and expressed as e−2x,
where xmm is the distance between two elements. We chose
two points in a chip randomly, and compared the correlation
coefficients estimated by conventional grid-based model and
the proposed model to the correct value. The results are
depicted in Figs. 5, 6 and 7. The chip size and the grid size
were assumed to be 5 × 5 mm2 and 10 × 10, respectively.

Figure 5 shows the correlation coefficients expressed by the
conventional grid-based model. Due to the discretization, only
a few discrete values are expressible. There are many dots
where the estimated correlation coefficient is larger than the
actual one in the upper part. On the other hand, Figs. 6 and 7
depict the correlation coefficients estimated with bilinear and
bicubic interpolations. With the interpolation, the continuous
expression of correlation coefficients is attained. Large errors
of the original grid-based model found in Fig. 5 are improved
both in Figs. 6 and 7. In the case of bilinear interpolation,

Fig. 8. Circuit placement for evaluation.

the modeled correlation coefficients tend to be larger than
the actual, however this tendency is suppressed in the case
of bicubic interpolation.

Table II lists RMS (root mean square) error of the correla-
tion coefficients. The bicubic interpolation archived the lowest
error. The RMS error was increased by bilinear interpolation
because the random sampling of two points chose many
samples with low correlation.

IV. EXPERIMENTAL RESULTS

In this section, the proposed modeling with interpolation is
applied to SSTA, and the SSTA accuracy is discussed.

A. Experimental Conditions
We implemented SSTA proposed in [2] with C++ language,

and evaluated the accuracy. We assumed a 5 × 5mm2 chip
in a 90nm technology. Supposing Vth had spatial correlation
just as an example, Vth variation of σ=25mV was given.
The correlation coefficient was assumed to be dependent on
distance xmm, and be expressed as e−2x. Other variability
components, such as random and die-to-die, were not con-
sidered here. We used a benchmark circuit c1355 included
in ISCAS85 benchmark set. The number of cells was 329.
We obtained a cell placement using a commercial P&R tool,
and scaled the placement to two sizes; 0.25×0.25 mm2 and
0.05×0.05 mm2. When a circuit is placed in a smaller area,
more accurate model of correlation coefficient is necessary
for estimating timing. The grid size was varied from 2× 2 to
20 × 20.

When we use the grid-based model, the analyzed result
varies depending on the circuit placement, even though the
assumed variability is uniform. This is because the relative
position between grid boundaries and cells fluctuates the
timing estimates. We therefore placed the circuit at 8 × 8
positions within a single region, as depicted in Fig. 8, and
evaluated the minimum and maximum timing estimates.

B. Without Interpolation
Figures 9 and 10 show the timing estimates when the

conventional grid-based model was used. The left and right
graphs represent the average and standard deviation of the cir-
cuit delay, respectively. The error bars indicate the maximum
and minimum values. The horizontal axis is the number of
discretization per side. We can see the estimates converge to
a value as the number of discretized regions becomes large.
However, when the circuit area is small, the difference between
the maximum and minimum is still large in Fig. 10. In this
case, the 20× 20 grid is not sufficient. The timing analysis of
a circuit in a small area is sensitive to the discretization error.
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Fig. 9. Average and standard deviation of circuit delay (w/o interpolation,
placed area 0.25×0.25 mm2).
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Fig. 10. Average and standard deviation of circuit delay (w/o interpolation,
placed area 0.05×0.05 mm2).
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Fig. 11. Average and standard deviation of circuit delay (w/ bicubic
interpolation, placed area 0.25×0.25 mm2).
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Fig. 12. Average and standard deviation of circuit delay (w/ bicubic
interpolation, placed area 0.05×0.25 mm2).

C. With Interpolation
Figures 11 and 12 show the estimates when the bicubic

interpolation was applied. The difference between the maxi-
mum and minimum values becomes small, which means the
estimation is not sensitive to the relative placement between
cells and grid boundaries.

Figure 13 shows the maximum errors of the average and
standard deviation in the case of 0.05×0.05 mm2 placement.
The timing analysis with bicubic interpolation achieved more
accurate estimation than that with the conventional grid-based
model. Although the conventional model could reduce the
error by increasing the number of discretized regions, the
proposed model attained the same accuracy with the smaller
number of discretized regions. For example, when the maxi-
mum acceptable error of the average and standard deviation
is 3ps, the proposed model requires only 8 × 8 grid, whereas
the conventional model needs 15 × 15 grid. In this case, the
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Fig. 13. Max. error vs. #discretization (placed area 0.05×0.05 mm2).

proposed model can reduce the CPU cost for PCA by 97.7%.

V. CONCLUSION

This paper discussed modeling for spatially-correlated vari-
ability, and presented an accuracy enhancement technique with
spatial interpolation of principal component coefficients. We
experimentally demonstrated that the interpolation enabled the
continuous expression of correlation even though the grid-
based modeling was adopted. We also verified the accuracy
improvement of SSTA. Even when analyzing a circuit placed
in a small area, the proposed modeling provided accurate
timing estimates with a reasonable grid fineness. From another
aspect, the proposed model attained the same accuracy even
when the number of discretization was reduced. In the test
case, CPU time for PCA was reduced by 97.7%.
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