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SUMMARY An area-efficient dynamically reconfigurable architecture
is proposed, which is dedicated to media processing. To implement a com-
pact but high performance device, which can be used in consumer appli-
cations, the reconfigurable architecture distinctively performs 8-bit oper-
ations required for media processing whereas fine-grained operations are
executed with the cooperation of a host processor. A heterogeneous recon-
figurable array is composed of four types of cells, for which configuration
data size is reduced by focusing application domain on media processing.
Implementation results show that a multi-standard video decoding can be
achieved by the proposed reconfigurable architecture with 1.1×1.4 mm2 in
a 90 nm CMOS technology.
key words: reconfigurable, media processing, multi-standard, area-
efficiency, dynamic reconfiguration

1. Introduction

In recent years, various video compression algorithms are
used in a variety of consumer applications, and for each ap-
plication, e.g. video-phone, video recording, video stream-
ing, and digital TV broadcasting, an appropriate algorithm
must be selectively employed. Therefore, there are increas-
ing demands for consumer devices to support more than one
video compression algorithm.

Owing to their specialized organization, ASICs offer
high performance, small area, and low power consumption,
but lack flexibility and incur high development costs. On
the other hand, microprocessors offer the maximum flexibil-
ity since many of applications can be programmed as soft-
wares, but suffer from lower performance and higher power
consumption.

To address these problems, various reconfigurable ar-
chitecture have been proposed [1] aiming at high perfor-
mance, high flexibility, and low power consumption. How-
ever, the conventional reconfigurable architectures usually
suffer from large hardware cost [2] to be used in consumer
audiovisual applications. On the other hand, there are some
approaches of reconfigurable architecture [3], [4] achieving
lower hardware cost than ordinary commercial FPGAs.

Motivated by this tendency, the present paper proposes
a novel architecture of reconfigurable device dedicated to
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media processing. In order to achieve high performance
and area-efficient implementation of multi-standard video
decoding, our reconfigurable architecture is designated to
perform distinctive operations of media processing. Since
media processing incurs many of 8-bit and 16-bit opera-
tions, 8-bit coarse-grained reconfigurable architecture is em-
ployed. In order to execute calculation processes of video
decoding efficiently, the reconfigurable architecture adopts
a heterogeneous array structure composed of four type of
cells, i.e. basic cell with an ALU and a shifter, multiplica-
tion cell with a multiplier, register cell with a 16× 8-bit reg-
ister file, and memory cell with a 256 × 8-bit memory. As
for complicated and conditional operations including header
analysis, address calculation, and decoder status control, an
embedded host processor is cooperatively used.

Moreover, it is distinctive that our reconfigurable archi-
tecture achieves significant reduction of configuration data
size and reconfiguration overhead owing to the specialized
function cell organization for media processing. As a re-
sult, dynamic reconfiguration can be performed although the
configuration data is stored in an on-chip memory, which is
on the outside of reconfigurable array. Specifically, the pro-
posed reconfigurable architecture can change its configura-
tion in 32 cycles, and therefore achieving dynamic reconfig-
uration in nano-second order. This exclusion of configura-
tion memory to outside of reconfigurable array contributes
much for area efficiency.

VLSI implementation results claim that the proposed
architecture attains 3.5 times as high performance as
conventional reconfigurable architectures and the multi-
standard video decoder based on the reconfigurable cell ar-
ray occupies only 1.1×1.4 mm2 in 90 nm CMOS technology.

The rest of the paper is organized as follows. Sec-
tion 2 explains architecture exploration of domain specific
reconfigurable device. Detailed architecture of function
cells, array organization, and dynamic reconfiguration are
described in Sect. 3. VLSI implementation results are shown
in Sect. 4. Section 5 describes related works of hetero-
geneous coarse-grained reconfigurable devices, and Sect. 6
concludes this work.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers
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2. Architecture Exploration of Domain Specific Recon-
figurable Device

2.1 Essential Evaluation Items for Reconfigurable Devices

In order to construct an efficient reconfigurable architecture,
firstly it is necessary to consider the following items [5].

1. Cooperation with host processor:
It must be decided for any reconfigurable device that
target applications are achieved only by the device or
by the cooperation with a host processor. Generally,
when employing coarse-grained architecture the coop-
eration works effectively.

2. Granularity and functionality of reconfigurable cells:
In accordance with the characteristics of target applica-
tions, the granularity and the functionality of reconfig-
urable cells should be carefully devised.

3. Reconfiguration mechanism:
When enabling dynamic reconfiguration aiming at
higher area-efficiency by time-multiplexed processing,
the reconfiguration mechanism with less time and/or
area overhead is indispensable.

Referring to the above evaluation items, the reconfig-
urable system architecture is constructed as shown in Fig. 1,
which consists mainly of a reconfigurable array, a host pro-
cessor, a configuration memory, and a data memory. The
reconfigurable array is composed of several kinds of pro-
grammable cells and their programmable interconnects.

As shown in Fig. 1, configuration data and initialization
data of the reconfigurable array are stored in the on-chip
configuration memory and the data memory, respectively.
On the configuration process of reconfigurable array, the
configuration data and the initialization data are provided
by these memories. User data for the reconfigurable array
such as bitstream and frame data is transferred directly from
the external memory to memory/register cells in the recon-
figurable array. In addition, there are control data signals
and data bus between the host processor and reconfigurable
array. The host processor and the reconfigurable array can
hence communicate with each other during runtime. De-
tailed interface architecture of the reconfigurable array is
described in Sect. 3.9.

Each point for an area-efficient reconfigurable device is

Fig. 1 Overall architecture.

discussed in the followings.

2.2 Cooperation with Host Processor

There is a trade-off between the granularity of operation and
the performance of reconfigurable device. A fine-grained re-
configurable architecture [5], [6] has a high flexibility to im-
plement various applications. On the other hand, a coarse-
grained reconfigurable architecture achieves high area effi-
ciency if the granularity of reconfigurable device is suitable
for the application.

Since major part of video applications has signal pro-
cessing aspect, we adopt the coarse-grained architecture.
However, complicated and conditional operations are also
observed such as header analysis, address calculation for
frame reference, and decoder status control. Therefore, the
proposed reconfigurable architecture enables efficient coop-
eration with a host processor, where the reconfigurable array
and the host processor are embedded in a single chip and
work simultaneously by sharing the external memory.

2.3 Granularity and Functionality of Reconfigurable Cells

An area-efficient reconfigurable device must have suitable
granularity and functionality for targeted applications [5],
[6]. By reviewing processing features of standard video ap-
plications such as MPEG-2 decoder, MPEG-4 decoder, and
H.263 decoder, requirements for reconfigurable cells are de-
rived.

Variable length decoder (VLD) performs the decoding
of a codeword into a quantized DCT coefficient, which is a
series of codeword length detection, symbol decoding, bit-
stream shifting, and next codeword loading. Symbol decod-
ing and bitstream shifting can be implemented by memories
and shifters, respectively. Codeword length detection is to
be done based on several small tables, whose word length is
about 6 bits.

Inverse quantizer (IQ) performs the multiplication of
a quantized DCT coefficient by quantization step size as
well as saturation and IDCT mismatch control. Usually, ad-
dresses of inverse zig-zag scanning are stored in a memory.
Calculation accuracies for address resolution and multipli-
cation/saturation control are 6–8-bit and 8–24-bit, respec-
tively.

An 8×8 two-dimensional inverse discrete cosine trans-
former (IDCT) is generally employed in various video appli-
cations. First, 8×1 1-D IDCT of each row is calculated, and
then 8×1 1-D DCT of each column is calculated. Instead of
using a transposition memory, addresses for access pattern
of intermediate data are stored in a memory. The required
bit width depends on the calculation accuracy, in general
16–28-bit is required.

Motion compensator (MC) performs motion vector de-
coding, half-pel manipulation, and frequent accessing to the
frame memory, including picture reference and calculation
result write-back. The required bit width is about 10-bit for
calculating the average of pixels in the half-pel manipulator,
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and about 24-bit for calculating frame memory addresses.
As mentioned above, the multi-standard video decoder,

which is the targeted application domain of our reconfig-
urable architecture, consists mainly of 8–32-bit operations,
particularly 8–16-bit operations. Thus the granularity of our
reconfigurable device is set to 8 bits. In order to implement
multibyte operations, neighboring cells are used simultane-
ously.

As for functionality of reconfigurable cells, our archi-
tecture adopts a heterogeneous structure of four types of
cells, i.e. basic cell with an ALU and a shifter, multiplication
cell with a multiplier, register cell with a 16 × 8-bit register
file, and memory cell with a 256 × 8-bit memory. Since
application domain is specific in our reconfigurable device,
this heterogeneity can be supposed to be more effective. The
ratio of four types of cells and the detailed array structure are
determined to be suited for the mapping of multi-standard
decoding.

2.4 Dynamic Reconfigurability

Dynamic reconfigurability of devices has also a fundamen-
tal trade-off between area and performance. An excessive
numbers of reconfiguration during operations leads to the
decrease in performance due to reconfiguration overhead.
Therefore, in order to achieve effective architecture it is very
important to determine the appropriate dynamic reconfig-
urability in consideration of the reconfiguration overhead.

Some of the conventional dynamically reconfigurable
devices [7], [8] have a multi-context architecture and can
perform the runtime reconfiguration without any overhead.
However, a set of configuration data and required multiplex-
ers for context control occupy considerable area in recon-
figurable cells. As a result, area-efficiency of the device is
decreased in this style.

Since reconfiguration overhead and hardware costs are
increased relative to the size of configuration data, every ef-
fort must be made for the reduction of configuration data
size aiming at higher area-efficiency. Each of function cells
in our reconfigurable architecture is specialized to handle
calculations in media processing applications so that con-
figuration data in each cell can also be reduced to required
minimum. Therefore, our reconfigurable architecture can
perform dynamic reconfiguration with low overhead, where
configuration data can even be stored on the outside of the
array.

As an example of reconfiguration overhead, when sup-
pressing the overhead to 5% of whole decode process, the
runtime reconfiguration has to be performed in about 30
cycles at the clock frequency of 100 MHz, in case a mac-
roblock decoding is executed with four contexts.

3. Details of Reconfigurable Architecture

3.1 Basic Structure of Reconfigurable Cell

Figure 2 shows basic structure of our reconfigurable cell.

Fig. 2 Basic structure of reconfigurable cell.

Fig. 3 Interconnect part of reconfigurable cell.

Each of the cells consists of an interconnect part, which has
almost the same structure for all kinds of cells, and a func-
tion part, that has a different structure for each kind. De-
tailed organization of the interconnect part and the function
part in each cell are described in what follows.

3.2 Interconnection

When providing fully flexible interconnection architecture,
the serious increase of the hardware cost is inevitable. In
particular, as in conventional fine grained reconfigurable de-
vices, such as FPGAs, the interconnect part accounts for
about 90% of chip area [9]. The interconnect architecture
has a major trade-off between flexibility and hardware cost.
In order to achieve high flexibility, such as a crossbar switch
or a switching matrix should be adopted with a large amount
of hardware cost. Therefore, as shown in Fig. 3(a), the inter-
connect part of the proposed reconfigurable cell only con-
nects adjacent cells so as to reduce hardware cost of re-
configurable device. Besides, this interconnection also acts
as a data feedthrough between adjacent cells. Accordingly,
two cells, which are located at a certain distance, can even
exchange data. As a general purpose reconfigurable de-
vice, the above mentioned limitation on connection capa-
bility may incur fatal loss in cell utilization. To avoid this
problem, we employ heterogeneous array structure, which
can eliminate long distance paths when executing video ap-
plications (see Sect. 3.7).

As shown in Fig. 3(b), in our architecture the intercon-
nect part of reconfigurable cell is composed of eight 8-bit
word lines and eight switches. Eight switches of word lines
can change the connection of each two word lines. Four
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Table 1 Configuration data for interconnect part.

#bit Unit Configuration

8 Status of eight switches connect or disconnect
4 Direction of four switches A0→B2 or A0←B2,

A1→B3 or A1←B3,
A2→B0 or A2←B0,
A3→B1 or A3←B1

Fig. 4 Interconnect part of memory cell.

Table 2 Configuration data for interconnect part.

#bit Unit Configuration

32 Status of thirty-two switches connect or disconnect
16 Direction of sixteen switches A0→B2 or A0←B2,

A1→B3 or A1←B3,
A2→B0 or A2←B0,
A3→B1 or A3←B1

switches of them, which connect the word lines of A0-B2,
A1-B3, A2-B0, and A3-B1, can configure the direction of
signals. As shown in Table 1, the interconnection of word
lines are defined by 12-bit configuration data.

On the other hand, since memory cell has a large reg-
ister file, memory cell has 4 times as large area as the other
cells as is explained below. As shown in Fig. 4, the inter-
connect part of memory cell is composed of four identical
components, while each component has the same structure
as the interconnect part of other types of cells. Eight inputs
to memory cell are W0–W7 in Fig. 4. The interconnect part
of memory cell has 4 times as large number of configuration
bits as the one of other cells. As shown in Table 2, the in-
terconnection of word lines of memory cell are defined by
48-bit configuration data.

3.3 Basic Cell

Figure 5 shows the organization of the function part of basic
cell, which is composed of two input registers, an ALU, a
shifter, and an output register.

Word inputs A and B can be selected from A0–A3 and
B0–B3, respectively. On the other hand, word output line
can be connected to A0–A3 and B0–B3.

Flag inputs ei and fi can be selected from fi0–fi3. On
the other hand, flag output fo can be selected from the carry
output or the sign from the ALU or the carry output from
the shifter. The flag output can also be selected from the flag

Fig. 5 Organization of function part of basic cell.

inputs fi0–fi3 so as to enable a flag signal to be transferred to
a distant cell. Furthermore, 1-bit pipeline register for a flag
output can be used to insert 1 cycle delay.

Two input registers and an output register can be de-
fined as pipeline registers, registers with write-enable signal
ei, constants, or unused registers.

The ALU can execute logic operations, addition and
subtraction. When the ALU performs logic operations, the
functions can be defined as AND, OR, and MUX with the
selector of fi. On the other hand, when the ALU performs
addition or subtraction, its function can be defined by either
of the configuration data, the flag inputs ei and fi.

The shifter can be defined as a fixed shift or a variable
shift. The shift width of a fixed shifter can be defined as
−4–+3 by the configuration data. On the other hand, the
shift width of a variable shifter can be defined by the lower
3-bit of input word line A.

A basic cell can cooperate with the neighboring basic
cells so as to perform a multibyte operation. The left side
basic cell outputs the most significant byte, and the right side
basic cell outputs the least significant byte. Carry signals co

and ci are the carry output to neighboring cell and the carry
input from neighboring cell, respectively. Carry input to the
ALU is selected from fi or ci. Besides, dedicated inputs
(shi and sli) and outputs (sho and slo) from/to neighboring
cells are equipped for multibyte shifting by concatenation
of basic cells.

Configuration data for basic cell is summarized in Ta-
ble 3.

3.4 Multiplication Cell

Figure 6 shows the organization of the function part of mul-
tiplication cell. Being composed of two input registers and
a multiplier, multiplication cell can execute 8 × 8-bit multi-
plication.

In the same manner as basic cell, the word inputs A
and B can be selected from A0–A3 and B0–B3, respectively.
The output lines of the multiplier can be connected to A0–
A3 and B0–B3.
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Table 3 Configuration data for basic cell.

#bit Unit Configuration

6 Registers pipeline, write enable, constants,
unused

4 ALU addition with carry fi or ci,
subtraction,
logic operation (AND, OR, or MUX),
shifter type (extended or cooperative)

3 Shifter shift width of −4–+3 bits
4 Flag output output from fo0–fo3

4 Flag input input to fi and ei

4 Word line input input to port A and B
4 Word line output selection of output line or Hi-Z

Fig. 6 Organization of function part of multiplication cell.

Table 4 Configuration data for multiplication cell.

#bit Unit Configuration

5 Registers pipeline, write enable, constant,
unused

2 Multiplier Sign of word line input
4 Flag output output from fo0–fo3

4 Flag input input to fi and ei

4 Word line input input to port A and B
6 Word line output selection of output line or Hi-Z

Two input registers can be defined as pipeline registers,
registers with write-enable signal ei, constants, or unused
registers. In order to implement the signed multiplier, the
signs of input A and B can be defined by the configuration
data. On the other hand, an output register can be defined as
a pipeline register, or an unused register.

Flag inputs ei and fi can be selected from fi0–fi3. On the
other hand, flag output fo can be selected from the sign of the
multiplication result or the MSB of the least significant byte
of the multiplication result. Same as basic cell, flag output
can also be selected from the flag input fi0–fi3 in order to
transfer a flag signal to a distant cell. Furthermore, 1-bit
pipeline register for a flag output can be used to insert 1
cycle delay.

Configuration data for multiplication cell is summa-
rized in Table 4.

Fig. 7 Organization of function part of register cell.

3.5 Register Cell

Figure 7 shows the organization of the function part of reg-
ister cell. Register cell is composed of a 16 × 8-bit register
file and a 4-bit counter.

For data writing operation to the register file, the write
address WA and the write data WD and can be selected from
B0–B3 and A0–A3, respectively. On the other hand, for
data reading operation from the register file, the read address
RA can be selected from A0–A3, and the read data RD is
connected to either of B0–B3. The least significant 4-bit of
WA and RA are input to the register file as the write address
and the read address, respectively. A register cell can also
be used as delay unit. By calculating 1–16 cycles using the
4-bit counter, this register cell outputs the input data from
WD after 1–16 cycles.

As the distinctive feature of register cell, various regis-
ter access configurations can be defined in order to achieve
an efficient cooperation among multiple register cells.

Write enable signal can be defined as always ‘1,’ al-
ways ‘0,’ or either of flag inputs fi0–fi3. As another configu-
ration, when the most significant 4-bit of WA is equal to the
certain setting value, the write enable signal is asserted so as
to provide periodical register accesses. On the other hand,
the read enable signal can be defined as always ‘1’ or either
of flag inputs fi0–fi3. Same as reading operation, by using
the most significant 4-bit of RA periodical register accesses
can be facilitated. When the read enable signal is ‘0,’ the
read data RD outputs the data of the opposite line, e.g. B0
can output the data from A2.

Flag handling is almost the same as basic cell and mul-
tiplication cell, except that each of the most significant 4-bit
of RD can be split and output via flag lines in order to im-
plement fine-grained operations such as a control circuit.

Configuration data for register cell is summarized in
Table 5.
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Table 5 Configuration data for register cell.

#bit Unit Configuration

3 Write enable selection of write enable
3 Read enable selection of read enable
4 Constants constants for enable address
3 Flag input selection of flag input
6 Flag output selection of flag output (fo0–fo3)
6 Word line input input to port WA, WD, and RA
3 Word line output selection of output line or Hi-Z

Fig. 8 Organization of function part of memory cell.

3.6 Memory Cell

Figure 8 shows the organization of the function part of mem-
ory cell, which has a 256 × 8-bit memory and occupies 4
times as large area as any of other cells.

The input signal and the output signal of memory cell
can be selected from W0–W7. The flag input signals fa–fd

correspond with the flag output from four flag switches, as
illustrated in Fig. 4.

For data writing operation to the memory, the write ad-
dress A and the write data WD can be selected from W0–
W7. On the other hand, for data reading from the memory,
the read address A and the read data destination RD can be
selected from W0–W7 and W0–W3, respectively.

The write enable signal can be selected from the flag
input fa–fd. When the address extension signal E, which is
selected from W0–W3, is equal to the 8-bit certain setting
value, the write enable signal is also asserted so as to fa-
cilitate access interleaving between multiple memory cells.
On the other hand, the read enable signal can be defined as
always ‘1’ or either of flag inputs fa–fd. When the address
extension signal E is equal to the 8-bit certain setting value,
the read enable signal can be asserted as well. When the read
enable signal is ‘0,’ the read data RD bypasses the write data
WD.

Each of four flag switches can independently handle
the flag output in the same manner as other types of cells as
shown in Fig. 4.

Configuration data for memory cell is summarized in

Table 6 Configuration data for memory cell.

#bit Unit Configuration

4 Write enable selection of write enable
4 Read enable selection of read enable
8 Constants constants for enable address
8 Flag input selection of flag input (fa, fb, fc, fd)
8 Flag output selection of flag output (fo0–fo3)

in flag switches a–d (Fig. 4)
8 Word line input input to port A, WD, and E
3 Word line output Selection of output line or Hi-Z

Fig. 9 Heterogeneous structure of 4 types of cells.

Table 6.

3.7 Heterogeneous Array Structure

As described in Sect. 2.3, the proposed reconfigurable ar-
ray adopts a heterogeneous structure by combination of four
types of cells. First, in order to implement multi-standard
video decoder on a reconfigurable array, the ratio of four
types of cells is determined based on the required number of
cells for the implementation of IDCT of MPEG-2 decoder,
since various video decoding algorithms utilize IDCT in al-
most the same form and its technology mapping requires
all types of cells. Then, a heterogeneous array structure of
cells is determined to be suitable for mapping of the multi-
standard video decoder by considering the following.

• Concatenation use of adjacent cells must be facilitated
in order to implement multibyte operations.

• Neighboring memory cells are designed to contain an
intermediate decode data of macroblock during run-
time reconfiguration.

• Neighboring basic cells and multiplication cells can
implement a 16 × 16 multiplier efficiently.

• Register cells, which can implement a delay circuit,
must be almost uniformly distributed in the array.

• In order to achieve a scalability of reconfigurable cell
array size, the reconfigurable cell array is based on a
regular pattern of cell array.

In accordance with the above conditions, the heteroge-
neous structure of four types of cells is determined as shown
in Fig. 9. The heterogeneous structure is based on a basic
pattern, called “Tile,” and 16 tiles constitute the whole ar-
ray.

As shown in Fig. 9, tiles are placed with flipped hor-
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Fig. 10 Mapping of 16 × 16-bit multiplication.

izontally/vertically so that neighboring four memory cells
can store the intermediate decode data of one macroblock
during reconfiguration. In addition, as shown in Fig. 10, a
16 × 16-bit multiplier can be implemented with five basic
cells and four multiplication cells, and mapped on our re-
configurable array with only adjacent cells. Moreover, a
32-bit adder-subtractor can be implemented with adjacent
four basic cells. Therefore, 8-point 1D-IDCT operation can
be efficiently implemented on the reconfigurable array with
four 16-bit multipliers and five 32-bit adder-subtractor.

The proposed heterogeneous array structure, which
may be observed with less flexibility as a reconfigurable
device, can offer good performance when executing media
processing applications with small area occupancy. More-
over, the proposed heterogeneous array structure is mi-
croscopically heterogeneous and macroscopically homoge-
neous, and thus the proposed reconfigurable architecture has
scalability in the size of reconfigurable cell array. Naturally
in case the cell array size is scaled up, the amount of config-
uration data increases, for which reconfiguration overhead
is discussed in Sect. 3.8.

3.8 Operation of Dynamic Reconfiguration

In order to perform runtime reconfiguration of reconfig-
urable array, the proposed reconfigurable array executes the
transfer of configuration data, the initialization of 8-bit reg-
isters of basic cells and multiplication cells, and the initial-
ization of register of register cells, and the initialization of
the 256 × 8-bit memory of memory cells is performed only
on start-up. For the purpose of reducing reconfiguration
overhead, it is very important to reduce the number of cy-
cles needed for the transfer of configuration data and the
initialization of registers. Therefore, the proposed reconfig-
urable array executes the transfer of configuration data, the

Fig. 11 Delivery of configuration data.

initialization of 8-bit registers in basic cells and multipli-
cation cells, and the initialization of register file in register
cells during runtime reconfiguration, while the initialization
of the 256 × 8-bit memory of memory cells is performed
only on start-up. As shown in Fig. 1, the configuration data
of each cell and the initial value of each register for run-
time configuration of reconfigurable array are stored in the
configuration memory and the data memory, respectively.

As shown in Fig. 11, the proposed reconfigurable ar-
ray has dedicated configuration lines for the transfer of con-
figuration data. Specifically, the configuration data can be
transferred at the throughput of 492 bits/cycle, which cor-
responds to the configuration data size for one row of the
cell array. Thus the transfer of configuration data to whole
reconfigurable array is completed within 20 cycles, which
corresponds to the number of cells in one column. If the
size of reconfigurable array is scaled up to m×n tiles, which
is equal to the array size of 5m × 3n basic cells, the transfer
of configuration data consumes 5m cycles at the throughput
of 3n × 41 bits/cycle.

As shown in Fig. 12(a), the proposed reconfigurable
array initializes input/output registers using vertical word
lines, which are A1-B3 and B1-A3 in Fig. 3(b). Two 8-
bit input registers are initialized with the same value. An
initial value is shifted vertically to the next basic cell. Ini-
tialization of registers in basic cells and multiplication cells
is completed in 24 cycles. In case the size of reconfigurable
array is scaled up to m × n tiles, the initialization of 8-bit
registers of basic cells and multiplication cells takes 3m × 2
cycles.

As shown in Fig. 12(b), the initialization of 16 × 8-bit
register file in register cells is performed using horizontal
word lines, which are A2-B0 and B2-A0 in Fig. 3(b). An
initial value is fed to the register file in 16 cycles with the
write address generated using the 4-bit counter in the regis-
ter cell. Due to the constraints of the interconnect resources,
it is unreasonable to initialize all register cells simultane-
ously. In our reconfigurable array, as shown in Fig. 12(b),
initialization of register cells is performed in a pair of cells.
In first 16 cycles, the initial value of the right register cell
is stored in the left register cell. In next 16 cycles, the ini-
tial value of the right register cell is transferred from the left
register cell in parallel with the initialization of the left reg-
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Fig. 12 Initialization of registers of basic cells, multiplication cells, and
register cells.

Fig. 13 Dynamic reconfiguration for media processing.

ister cell. In this way, all register cells can be initialized in
32 cycles.

Consequently, in our reconfigurable architecture, the
delivery of configuration data and the initialization of reg-
isters can be simultaneously performed in 32 cycles.

As shown in Fig. 13, while the configuration is changed
in the sequence of IQ, VLD, IDCT, and MC, in decode op-
eration of one macroblock, the reconfigurable array changes
its configuration four times per macroblock. Considering
the MPEG-2 decoder of 720 × 480 pixels 30 fps bitstream,
the decode operation of one macroblock has to be performed
in 24.7 µs, then the decode process of one macroblock has
to be performed in 2,470 cycles at the clock frequency of
100 MHz. Our reconfigurable architecture can change its
configuration in 32 cycles, and therefore suppresses the re-
configuration overhead to 5.2% of 2,470 cycles. It can be
confirmed that our reconfigurable architecture can perform
dynamic reconfiguration with low overhead. Due to the lack
of space, detailed discussion concerning application map-

Fig. 14 Interface of reconfigurable device (host processor and external
memory).

Fig. 15 Interface of reconfigurable device (data memory and
configuration memory).

ping will be given elsewhere [10].

3.9 Interface of Reconfigurable Device

Figure 14 illustrates the interface between reconfigurable ar-
ray and host processor. A control signal can be connected to
a flag input line of a cell on the left side of the reconfigurable
array. Similarly, an interrupt signal, generated in a cell on
the left side, is reported through a flag out line. On the other
hand, data transfer between the host processor and the ar-
ray is accomplished by means of data memory bus, each
8 bits of which is connected to an A2/B2 word line of any
basic cell on the left side of the array. As for the data trans-
fer from/for the external memory, data bus, address bus, and
control (enable) lines are connected to any of top and bottom
cells. Moreover, memory cells (top or bottom) and register
cells (second row) can be used as I/O buffer.
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The interface between reconfigurable array and con-
figuration/data memory is shown in Fig. 15. As shown in
Fig. 11, the configuration data from configuration memory
is transferred through vertical configuration lines. On the
other hand, as shown in Fig. 12, initial values of input/output
registers of basic cells and multiplication cells are delivered
by means of vertical word lines (A1s) on the upper side of
the array. Also, initial values of register files in register cells
are transferred via horizontal word lines (A0s, B0s, A2s, and
B2s) on the right/left side of the array.

4. Implementation Results

4.1 Prototype Chip Implementation

In order to implement the prototype reconfigurable device,
at first, an estimation of gate count and delay has been
performed by Synopsys Design Compiler in 90 nm CMOS
technology. Estimation results of gate count and delay are
shown in Table 7.

Then we decided the structure of interconnect switch
on the basis of Table 7. In general, an interconnect architec-
ture has large impact to the flexibility and hardware costs of
reconfigurable device. As shown in Fig. 3, in the proposed
reconfigurable architecture, neighboring cells can be inter-
connected through a bidirectional switch.

An interconnect switch can be implemented by a pass
transistor or tri-state buffer [9]. Pass transistor based in-
terconnect switch is usually smaller and faster than the tri-
state buffer based switch. However, in the case of constitut-
ing longer path, which has dozens of switches, the tri-state
buffer based interconnect is faster than pass transistor based
interconnect. Because the area and performance of recon-
figurable device depend heavily on the interconnect archi-
tecture, it is very important to decide the ratio of the number
of pass transistors and tri-state buffers. In other words, the
advantages of both switch types can be gained by placing
a tri-state buffer after every N pass transistor, where N de-
pends on the interconnect architecture, and must be deter-
mined based on the simulation results.

In the array structure of Fig. 9, the longest path between
the most distant cells incurs about thirty switches. Fig. 16
shows the waveform of change in electric potential of the
wire after thirty interconnect switches. The broken line in-
dicates that the delay of thirty pass transistors is about 7.0 ns.
On the other hand, the continuous line indicates that the de-
lay of thirty mixing switches is about 3.0 ns. The mixing
switches have a tri-state buffer after every ten pass transis-
tors. The delay of thirty mixing switches is equal to the
delay of memory cell. Therefore, as shown in Fig. 17, tri-
state buffers are placed in the interconnect, which is across

Table 7 Logic synthesis results of each cells.

basic mult. register memory
cell cell cell cell

# gates 1,015 1,367 2,167 3,568
delay (ns) 2.58 3.50 1.43 3.86

the border of tiles.
The proposed reconfigurable device is designed using

90 nm CMOS technology. After the design of the prototype
reconfigurable device, the wire resistance and the wire ca-
pacitance are evaluated by Synopsys Star-RCXT. Then an
accurate estimation of critical path delay of each cell was
performed by Synopsys PathMill, whose simulation result
is presented in Table 8.

The longest delay for memory cell is 2.7 ns, which
stands for the maximum clock frequency of the proposed
reconfigurable device is about 370 MHz. Delay of 32-bit
adder, which can be implemented on the neighboring four
basic cells, is 2.63 ns, which is almost the same delay as the
memory cell. Therefore, in order to prevent the decrease of
the maximum clock frequency, the maximum bit width of
multibyte operation should be up to four bytes.

Table 9 summarizes the implementation results of the
proposed reconfigurable device. The proposed reconfig-
urable device can be implemented with about 297,000 gates
in 90 nm CMOS technology. The size of external memory is
51.6 kbits for configuration memory, and 36.9 kbits for data
memory.

A prototype chip of the reconfigurable device has been
implemented. Due to the area constraint of the prototype
chip, 3 × 4 tiles and 2 × 12 basic cells wit single context are
implemented, which can execute the realtime processing of
MPEG-2 decoder. Figure 18 depicts microphotograph of

Fig. 16 Change in electric potential after thirty switches.

Fig. 17 Mixing structure of interconnect switch.

Table 8 Delay of each cells.

basic mult. register memory
cell cell cell cell

delay (ns) 1.47 2.50 1.78 2.70
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Table 9 Implementation results.

Technology 90 nm CMOS
Number of gates 296,656
Area of reconfigurable device 1.1 mm × 1.4 mm
Delay on configurable cell 2.70 ns
Max clock frequency 370 MHz
Size of configuration data 8,448 bits/context
Configuration memory (five contexts) 51.6 kbits
Data memory (five contexts) 36.9 kbits

Fig. 18 Chip micrograph of prototype reconfigurable device.

Fig. 19 Number of cycles required for one macroblock processing on
MPEG-2 decoder.

the fabricated chip, which is composed mainly of the recon-
figurable cell array, the configuration memory, and the data
memory.

4.2 Process Scheduling

The number of clock cycles required for one macroblock
processing of MPEG-2 decode process is shown in Fig. 19.
Here, the overhead of runtime reconfiguration is included,
and the targeted host processor is ARM9TDMI [11].

Header analysis on the host processor and VLD on the
reconfigurable device needs to access the bitstream, and it
is not preferable to be invoked simultaneously. Therefore,
as shown in Fig. 20, while the reconfigurable device per-
forms IDCT and MC for a macroblock, the processor per-
forms the header analysis for the next macroblock. On the
contrary, while the reconfigurable device performs VLD/IQ,
the processor executes the process which does not need the
bitstream.

As shown in Fig. 20, the numbers of cycles for MPEG-
2 decoding operations of one macroblock are 1,888 and
1,793 on the host processor and the reconfigurable array, re-
spectively. An interrupt from the reconfigurable array to the
host processor notifies end-of-block (EOB), and enables the

Fig. 20 Process scheduling on MPEG-2 decoder.

host processor to start reconfiguration of the array. In the
scheduling of Fig. 20, the overhead of an interruption is as-
sumed to be 15 cycles. Bitstream and reference frame data
are directly transferred from the external memory to mem-
ory cells or register cells in the array. Decoded picture data
is output from register cells in the array to the external mem-
ory. Reference addresses of MCs are transferred from the
host processor to the array via data memory bus.

In order to perform the realtime processing of 720×480
pixels 30 fps MPEG-2 decoding, a total of 40,500 mac-
roblocks must be processed in each second. Thus the host
processor must operate at the clock frequency of 77 MHz
or more. On the other hand, implementation results claim
that the critical path of VLD/IQ, IDCT, and MC are 22.7 ns,
9.9 ns, and 11.5 ns, respectively. Thus, the maximum clock
frequency of VLD/IQ, IDCT, and MC on reconfigurable de-
vice are 44.0 MHz, 101 MHz, and 87.0 MHz, respectively.

Considering the above constraints, in order to attain
the realtime processing of MPEG-2 decoding, the clock fre-
quencies of 40 MHz for VLD/IQ and 80 MHz for IDCT and
MC are required on the reconfigurable device, while the host
processor operates at the clock frequency of 80 MHz.

In the same manner as in MPEG-2 decoder, realtime
processing of H.263 decoder and MPEG-4 decoder for
352 × 288 pixels 30 fps 384 kbps bitstream can be imple-
mented on the proposed reconfigurable device. Table 10
shows the number of required cells and the number of clock
cycles for the context of each algorithms, details of which
will be reported in another publication [10]. As shown in
Table 10, MPEG-2 decoder, H.263 decoder, and MPEG-4
decoder can be implemented on the proposed reconfigurable
device. While MPEG-2 decoder and H.263 decoder are at-
tained by four contexts of configuration data, MPEG-4 de-
coder takes five contexts.

4.3 Comparison with Conventional Architecture

Henceforth, the performance/area efficiency is evaluated in
comparison with other architectures. The area of our recon-
figurable device, which includes the configuration memory
and the data buffer for four contexts, is 2.1 mm2.

Table 11 summarizes the comparison results of perfor-
mance/area efficiency. In case all basic cells and all multi-
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Table 10 Cell utilization and number of cycles.

# cells # cycles
basic mult. reg. mem.

IDCT (row, column) 52 12 9 8 800
MPEG-2 VLD/IQ 87 3 12 10 140
MPEG-2 MC 87 0 13 4 515

H.263 VLD/IQ 63 1 14 8 25
MPEG-4 VLD 83 0 13 9 42
MPEG-4 IQ 36 4 0 9 394
MPEG-4 MC 65 0 9 4 496

Table 11 Comparison of performance/area efficiency.

area performance efficiency comment
(mm2) (GOPS) (GOPS/mm2)

47.3 29.6 8-bit, 90 nm
Proposed 1.6 22.2 13.9 16-bit

10.0 6.3 32-bit

FE-GA [3] 4.5 17.0 3.9 16-bit, 90 nm
D-Fabrix [4] 8.6 14.4 1.8 32-bit, 130 nm

plication cells can operate at the maximum clock frequency
of 370 MHz, the performance of the reconfigurable device in
the granularity of an 8-bit operations is 47.3 GOPS, namely
22.5 GOPS/mm2. On the other hand, the performances of
our reconfigurable device in terms of granularity of 16-bit
and 32-bit are 22.2 GOPS/mm2 and 10.0 GOPS/mm2. Due
to the difference between our architecture and other archi-
tecture in the memory size or the interface of reconfigurable
device, it is difficult to make a straightforward comparative
evaluation. However, it is apparent that our reconfigurable
device has an advantage in the performance/area efficiency
when executing media applications.

5. Related Works

One of the advantages of coarse-grained reconfigurable de-
vices is a small area/time overhead for its reconfiguration.
In particular, in recent years, ALU-based heterogeneous re-
configurable devices are devised actively.

FE-GA (Flexible Engine/Generic ALU Array) [3] has
16-bit granularity and heterogeneous array structure, which
consists of ALU cells, MLT (Multiplier) cells, and LS
(Load/Store) cells. The interconnection of cells can connect
only four adjacent cells. The main architectural difference
from our reconfigurable device is the use of a large crossbar
network, which enables flexible access to LS cells and local
memory.

On the other hand, MuCCRA (Multi-Core Config-
urable Reconfigurable Array) [12] is a framework, which
generates configurable DRPAs (Dynamically reconfigurable
processor arrays) for various target applications. MuCCRA
architecture adopts a heterogeneous array structure of PEs
(Processing Elements), which consists of an ALU, an SMU
(Shift & Mask Unit), and a Register File, Hard Macros,
such as multiplier or local memory, and SEs (Switching El-
ements). MuCCRA architecture equips the equal number of
ALUs and Register files, and the limited number of special
hard macros at the edge of PE array, which may suffer from

low cell utilization rate when executing media processing
applications.

An embedded domain-specific reconfigurable architec-
ture is introduced in [13], [14]. However, these reconfig-
urable architectures offer only limited types of computation,
such as ME (Motion Estimation) or DCT (Discrete Cosine
Transform), and there still remains considerable disadvan-
tages in terms of area occupation against ASICs.

6. Conclusions

An area-efficient reconfigurable device, which has sufficient
performance and flexibility to implement realtime multi-
standard decoder, has been proposed. In order to reduce
the configuration data and its hardware costs, the appli-
cation domain of our reconfigurable device is oriented on
media processing, and enables the reconfigurable architec-
ture to be suitable to implement media processing applica-
tions. Implementation results show that multi-standard de-
coder can be attained on the proposed reconfigurable device
with 1.1 mm × 1.2 mm in 90 nm CMOS technology. The
proposed reconfigurable device achieves 3.5 times as high
performance as conventional reconfigurable architectures.
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