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ABSTRACT
Power supply noise is becoming more and more influential on tim-
ing, though noise aware timing analysis has not been well estab-
lished yet, because of several difficulties such as its dependency on
input vectors and dynamic behavior. This paper proposes a static
timing analysis considering power supply noise in which the de-
pendency of noise on input vectors and spatial and temporal cor-
relations are handled in a statistical manner. We construct a statis-
tical model of power supply voltage that dynamically varies with
spatial and temporal correlation, and represent it as a set of uncor-
related variables. We demonstrate that power voltage variation is
highly correlated and adopting principal component analysis as an
orthogonalization technique is effective in variable reduction. Ex-
periments confirm the validity of our model and the accuracy of
timing analysis. We also discuss the accuracy and CPU time in
association with variable reduction.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—Simulation

General Terms
Design, Experimentation, Verification

Keywords
Statistical timing analysis, Power supply noise, Principal compo-
nent analysis, Gaussianization

1. INTRODUCTION
In nano-meter technology era, manufacturing variability fluctu-

ates circuit performance significantly, and variation-aware timing
analysis has been intensively studied[1, 2, 3]. In addition, timing
verification considering power/ground noise has been eagerly de-
manded. Power supply noise is expected to become a more and
more serious problem on timing in the future because of increasing
current consumption and decreased power supply voltage. A severe
obstacle for noise aware timing analysis is the difficulty to identify
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the worst-case noise for timing. Power supply noise depends on
given input signals and internal register states, and changes within
a clock cycle as well as cycle by cycle. As circuit scale becomes
larger, the combinations of input signals and register states increase
exponentially, which makes it prohibitively expensive to find the
true worst-case noise.

Dynamic timing simulation with power/ground network and in-
put patterns can provide timing information with noise. However,
dynamic timing analysis can not cover all paths, and verifies part of
path delays, which is a well known drawback. Even if a test pattern
that maximizes voltage drop is found, the vector does not neces-
sarily correspond to the worst-case for timing, because the circuit
structure and the layout are also associated with the timing. Prepar-
ing effective test vectors for noise aware dynamic timing verifica-
tion is a computationally expensive problem, and it is impossible to
solve in a practical time.

To consider the impact of power/ground noise on timing, static
timing analysis (STA) is commonly performed supposing that a
constant (DC) voltage drop, for example the maximum voltage
variation, is given to all gates. This approach is computationally
efficient, but there is no systematic way to determine the voltage
drop without optimism and excessive pessimism. When the maxi-
mum voltage drop is given to all gates, the estimated timing is too
pessimistic, which causes timing convergence problem and over-
design. To solve this problem, timing analysis considering dynamic
voltage variation has been proposed[4, 5], and some commercial
tools are available. However, it is necessary to obtain or assume the
worst-case noise, which means the pattern-dependency problem of
power supply noise remains unsolved.

Although finding the exact worst-case noise for timing is ex-
tremely difficult, designers have to assure that the designed circuit
operates at the target frequency in a quantitative manner before fab-
rication. Therefore, a systematic technique that can estimate not
exact but reasonable worst-case timing is necessary. Path-based
methods to estimate the maximum delay have been proposed[6, 7,
8]. These methods, however, have to be applied to many potential
critical paths, and hence the computational cost could be very high.
Recently, Ref. [9] has proposed an approach to estimate the effect
of power supply noise on timing by solving an optimization prob-
lem. The problem is formulated as a non-linear delay maximization
problem under the given constraints of current consumption. How-
ever, the circuit size reported in [9] is limited, and the applicability
to larger circuits is not clear. As another approach, a statistical
treatment has been introduced into power supply noise aware tim-
ing analysis[10, 11, 12]. Reference [10] estimates voltage variation
by convolution of statistically modeled current consumption and
impulse response of power/ground network. In [11], first, authors
derive the average and the standard deviation of every block and
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Figure 1: Overall view of proposed approach.

the correlation coefficients between blocks, and then estimate the
delay. Reference [12] focuses on spatial correlation of power sup-
ply noise and proposes to use principal component analysis (PCA)
for modeling of power supply noise. Path delay distribution is then
computed with uncorrelated variables. We know an argument that
timing failure due to power supply noise must be verified in a de-
terministic manner, since a certain input pattern necessarily causes
a problem. However, an exact verification in a vast input pattern
and register state space is impossible, and thus we believe that a
statistical approach helps designers estimate timing performance
quantitatively and systematically.

In this paper, we propose a statistical timing analysis method
considering dynamic power supply noise. The overall flow of the
proposed method is shown in Fig. 1. The proposed method models
power/ground noise statistically. Spatially and temporally corre-
lated power supply noise is transformed to uncorrelated variables
by using orthogonalization techniques, such as PCA and indepen-
dent component analysis (ICA). We then perform statistical static
timing analysis using the derived statistical power/ground noise
model. Statistical timing analysis with a statistical model of power
supply noise with PCA has been proposed by Kim[12], however,
it is a preliminary work and several important issues, such as non-
Gaussian distribution shape of variables and dynamic voltage fluc-
tuation within a clock cycle, remain unsolved or not addressed.
Further, variable reduction by PCA due to tight correlation among
variables is not aggressively exploited for reducing CPU cost of
statistical timing analysis.

In this work, we experimentally demonstrate that PCA-based sta-
tistical modeling, with some distribution transformation techniques
(e.g. Box-Cox transformation) if necessary, works well, though the
distribution of power supply noise is not exactly Gaussian. To take
dynamic noise behavior within a clock cycle into consideration, we
propose to discretize a clock cycle into several time slots, and as-
sign a random variable to each time slot to construct a statistical
model of dynamic power supply noise. We focus on an observa-
tion that power supply noise is highly correlated not only spatially
but also temporally, and model power supply noise with a small set
of random variables, which helps to reduce CPU time for timing
verification. We also demonstrate that adaptive spatial discretiza-
tion for variable assignment reduces PCA cost significantly. You
might think that SSTA with PCA is a well-known approach, but
this similarity is a big advantage to keep the compatibility to con-
ventional SSTA, and the proposed method can be easily integrated

into SSTA tools for manufacturing variability, i.e. statistical tim-
ing analysis considering both manufacturing variability and power
supply noise is easily realized in a unified approach.

This paper assumes that information on power supply noise
needed for the statistical modeling is given. Generally, the esti-
mation of power supply noise is not easy. We, however, think that
sophisticated methods, such as impulse response and convolution
with logic simulation results for power estimation and functional
verification[9] give us the information. An efficient information
preparation is another research topic to study, and hence we do not
discuss it further in this paper.

This paper is organized as follows. Section 2 discusses difficul-
ties of timing analysis considering power supply noise. We show
how to statistically model power/ground voltage variation in Sec-
tion 3 . Section 4 explains SSTA procedure with the proposed noise
model. We demonstrate experimental results in Section 5, and Sec-
tion 6 concludes the discussion.

2. DIFFICULTIES OF NOISE AWARE
TIMING ANALYSIS AND PROPOSED
APPROACH

When performing timing analysis considering power supply
noise, a problem is that the maximum voltage drop does not nec-
essarily cause the worst-case delay. The supply voltage changes
spatially and temporally within a clock cycle as well as cycle by
cycle. The observation of power supply noise only can not neces-
sarily detect a timing failure due to power supply noise, because
the timing depends on the position of critical paths as mentioned
in [9].

Figure 2 shows an example that the maximum voltage drop does
not always cause the worst delay. The solid lines and broken lines
represent power supply noise of cycle #(c) and cycle #(d) respec-
tively. Suppose a critical path exists in area A. In this case, the
delay of cycle #(c) would be worse than that of cycle #(d). How-
ever, if a critical path is located in area B, it is unclear which cycle
is the worse-case for timing in this chip. In area B, the noise of
cycle #(c) delays the gate switching at the beginning of clock cy-
cle, whereas it less affects the switching at the latter half of clock
cycle. On the other hand, in cycle #(d), the switching at the latter
half is much slowed down. Thus, the voltage fluctuation within a
clock cycle can influence the gate delay much or less depending
on the switching timing, where the switching timing is basically
determined by the circuit structure.

The noise waveform shape varies according to given input vec-
tors. As mentioned earlier, the space in input vectors and internal
logic states is tremendously huge and can not be explored thor-
oughly. We thus model power supply noise statistically preserving
the spatial and temporal correlation, and apply it to a statistical
static timing analysis. The proposed approach can solve the prob-
lem described above, i.e. the position of critical paths and spa-
tial and temporal difference of power supply noise are considered
simultaneously. We report an experimental result that the maxi-
mum noise does not necessarily involve the worst-case delay in
Section 5.

Principal component analysis (PCA), which is one of orthogo-
nalization methods, has a preferable advantage. Highly correlated
Gaussian variables are transformed into a small set of Gaussian
variables with a small sacrifice of accuracy. We here show an exam-
ple that power supply noise is highly correlated in space. We eval-
uated power supply noise of an FPU circuit in 1×1mm2 area[13],
and set 10×10 variables associated with spatially divided 10×10
grids. Each variable represents cycle-average supply voltage of
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Figure 2: Different waveforms of power supply noise in space
and time.
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Figure 4: Spatial correlation
of current consumption.

VDD side at each grid. The evaluation condition is the same with
experiments in Section 4. Figure 3 shows the histogram of cor-
relation coefficients between variables. We can see that variables
are highly correlated, and 36.2% of coefficients are above 0.9 in-
deed. We thus expect that a compact statistical model with a small
number of variables is derived. A small number of variables enable
us to perform SSTA and Monte Carlo simulation efficiently. On
the other hand, when we choose current consumption as a variable
instead of supply voltage, the correlation between the variables is
weaker than power supply voltage as shown in Fig. 4, and hence
variable reduction can not be efficient. Although current consump-
tions at the adjacent nodes are not much correlated, the impedance
of the power network strengthens the spatial correlation of power
supply voltage.

When using PCA, we have to pay attention to the distribution
shape of variables, because PCA assumes Gaussian distribution.
A problem to apply PCA to power supply noise modeling is non-
Gaussian noise distribution, which may cause undesirable mod-
eling error. Solutions to this problem include Gaussianizing the
variables, e.g. Box-Cox transformation[14]. This transformation
improves Gaussianity of the variable. In this paper, we experimen-
tally demonstrate that PCA-based modeling is reasonable from the
standpoint of practical use, though, rigidly speaking, the distribu-
tion is not Gaussian. When the variables are quite far from Gaus-
sian distribution, another orthogonalization technique, such as in-
dependent component analysis, should be applied, which is similar
to [3].

An advantage of the proposed method using variable orthogonal-
ization is a compatibility with SSTA developed for manufacturing
variability[1, 2, 3]. The derived statistical model of power supply
noise is expressed in a similar manner with manufacturing vari-
ability, and thus importing noise effect to SSTA is straightforward,
though handling within-cycle voltage variation requires a modifi-
cation. We therefore can perform SSTA covering both the process
and voltage variation in a unified manner. The proposed method
has a possibility to give a new sign-off criteria that considers both
manufacturing and voltage variation, though there remains several
points to study.
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y

Figure 5: Spatial discretiza-
tion. Divided into partitions
with broken lines.
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Figure 6: Temporal dis-
cretization. Dividing a clock
cycle into time spans.

3. PROPOSED STATISTICAL MODELING
OF POWER SUPPLY NOISE

This section explains the proposed modeling of power supply
noise. From now, we assume distributions of power supply volt-
age are Gaussian or can be transformed to Gaussian by variable
transformation techniques. We thus use PCA as an orthogonaliza-
tion method in this paper. We experimentally demonstrate non-
Gaussianity of the distribution is not significant in Section 5. Note
that even when distribution of power supply noise is far from Gaus-
sian, the basic concept of the proposed method works by using ICA
instead of PCA similar to [3].

3.1 Spatial and temporal discretization
Power supply noise varies continuously in space and time, and

rigidly speaking, every cell has different noise waveform. How-
ever, observation points of power supply noise are limited because
of cost, and the number of points is much reduced by clustering
cells. We first set up observation points by discretizing a chip spa-
tially. We also discretize power supply variation within a clock
cycle temporally. We then assign a random variable to each time
span at each spatial grid.

Spatial discretization is performed by partitioning a chip/block
area into a 2D grid and choosing a representative value for each di-
vided partition. As a representative value, for example, the voltage
at the center point (Fig. 5) or the average voltage in each partition
is a candidate. The voltages of all nodes in the same partition are
assumed to be identical.

Figure 5 is an example of uniform discretization, which is
widely used for manufacturing variability modeling. In the case of
power supply noise, more sophisticated discretization is desirable,
since power/ground voltage sometimes fluctuates locally. Fine dis-
cretization should be applied to heavily fluctuating area, whereas
coarse discretization is good enough for calm area. We here ex-
plain an adaptive discretization method as an example. First, we
divide a chip/block area into partitions which include only a sin-
gle observation node. We then assess whether two partitions can
be regarded to have the same voltage fluctuation, i.e. the differ-
ences of average and standard deviation are small enough and the
correlation coefficient is large enough. When these partitions can
be regarded as equivalence, we merge these partitions into a single
partition. This operation continues until all primal partitions are
evaluated.

Another important difference of power supply noise from man-
ufacturing variability is its dynamic behavior. Temporal continu-
ousness also needs to be removed. We partition a clock cycle into
several time spans, and compute a representative voltage (e.g. av-
erage as shown in Fig. 6).

We then treat the value at every clock cycle as a different sam-
ple. Figure 6 shows an example when the voltage at position (x, y)
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is divided into three time spans and its random variables are de-
noted as Vx,y,1, Vx,y,2 and Vx,y,3. The number of time spans is
determined according to the modeling requirement, i.e. when we
need to accurately model dynamic variation within a clock cycle,
the number of spans should be increased, otherwise a few spans are
sufficient.

3.2 Variable transformation with
orthogonalization

Given a set of variables, we translate the variables and derive a
compact statistical model with Gaussianization and orthogonaliza-
tion.

3.2.1 Gaussianization
The first step of the variable transformation is to improve Gaus-

sianity of the variables. This step can be skipped when the sup-
ply voltage distribution can be reasonably treated as Gaussian. A
famous transformation to improve Gaussianity is Box-Cox trans-
formation[14]. There are several transformation equations of Box-
Cox transformation, and the equation we use in this paper is ex-
pressed as follows.

ẑ =

j
zΛ−1

Λ
(Λ �= 0),

log (z) (Λ = 0),
(1)

where z is the original variable, ẑ is the transformed variable and
Λ is a parameter. In our modeling, z corresponds to a variable of
power supply noise Vx,y,t. The optimum Λ that maximizes Gaus-
sianity is computed for every variable Vx,y,t individually by maxi-
mum likelihood procedure, and is given to SSTA.

3.2.2 Orthogonalization by PCA
PCA maps a given set of correlated random variables to a new set

of uncorrelated random variables, which are called principal com-
ponents (PCs). Given a variance-covariance matrix, PCA trans-
forms the variable zi into Eq. (2), where λj is the jth largest eigen-
value, eij is the element of the jth eigenvector which corresponds
to zi, μi is the average of zi, and σi is the standard deviation of
zi. k is the number of PCs and pcj is the jth principal component.
Principal component pcj is expressed as Eq. (4), which is a linear
summation of n original variables of zi. The principal components
are random variables mutually uncorrelated with each other, which
eases computation of correlation significantly in SSTA[1]. More-
over, zi is often approximated as Eq. (3) with the reduced number
of PCs k′(k′ < k), when the original variables of zi are correlated.
When Box-Cox transformation is applied to zi beforehand, we just
replace zi with ẑi in Eqs. (2), (3) and (4).

zi = μi +

0
@ kX

j=1

p
λjeijpcj

1
Aσi (2)

≈ μi +

0
@ k′X

j=1

p
λjeijpcj

1
Aσi, (3)

pcj =
1p
λj

nX
i=1

„
eij

zi − μi

σi

«
. (4)

3.2.3 Computational complexity
Let m and n denote the number of samples and variables re-

spectively. The optimal Λ for Box-Cox transformation in Eq. (1)
is derived by likelihood function, and its complexity is O(m). The
transformation of all n variables requires the effort of O(mn). On

Table 1: Computational time of PCA.
#variables CPU time(s)

100 0.01
900 5.41

2500 91.3
4900 788

10000 7460

VDDdl

VSSdl

VDDr

VSSr

Figure 7: Power and ground level difference between a driver
and a receiver.

the other hand, the complexity of PCA is O
`
n3

´
[1]. Consequently,

the total cost of the variable transformation is O
`
n3

´
. The com-

plexity is not low, but the variable transformation is performed only
once before SSTA, and hence this computational cost is expected
to be acceptable, which is similar to other SSTA methods[1, 2].

Table 1 shows the execution time of PCA implemented in R[15]
on a computer with Opteron processor 2.4GHz and 16GB memory.
Even in the case that PCA cost is not acceptable, for example, the
number of variables is larger than 10k, the modeling chip region
can be reasonably reduced, because power voltage variation has a
property of locality[16].

4. SSTA WITH STATISTICAL MODEL OF
POWER SUPPLY NOISE

This section discusses the application of the statistical model of
power supply noise to SSTA. The proposed model is applicable to
both path-based and block-based SSTA.

Equation (5) is a common gate delay model in a canonical form
that is widely used in SSTA implementation. We adopt this form,
because this form realizes fundamental sum and max operations
in SSTA efficiently as long as the variables are Gaussian[1].

di = μi +

k′X
j=1

ai,jpcj . (5)

Here, ai,j is a sensitivity coefficient associated with pcj .
The power and ground level difference between drivers and a

receiver affects the switching delay of the receiver, as reported in
references (e.g. [9, 17]). Figure 7 explains the level difference be-
tween a driver and a receiver. Suppose the receiver is placed at
(x, y) grid and switching in (t) time span. Similarly, the driver is
placed at (xl, yl) grid and switching in (tl) time span. VDDr/VSSr

is the supply/ground voltage of the receiver side at (x, y) grid in (t)
time span. Similarly, VDDdl /VSSdl is the supply/ground voltage of
the lth driver side at (xl, yl) grid in (tl) time span. To consider the
level difference, we use the following canonical delay form.
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dr = μr +
k′X

j=1

p
λjAr,jpcj , (6)

Ar,j = σVDDr

∂dr

∂VDDr
e(VDDr),j + σVSSr

∂dr

∂VSSr
e(VSSr),j

+
X

l

 
σVDDdl

∂dr

∂VDDdl

e“
VDDdl

”
,j

+σVSSdl

∂dr

∂VSSdl

e“
VSSdl

”
,j

!
. (7)

The first and second terms in RHS of Eq. (7) correspond to the
delay variation due to the voltage variation at the receiver. The
other terms mean the delay variation caused by the voltage variation
at the driver. In multiple-input cells, there are several inputs. Even
the voltages of stable (not switching) inputs affect the propagation
delay[17], and hence we sum up the terms with respect to every
voltage variable at drivers.

When the Box-Cox transformation is applied, VDD and VSS are
translated into V̂DD and V̂SS. ∂d/∂V̂ is the sensitivity of the de-
lay to V̂ , and is easily computed from ∂d/∂V and the derivative
of Eq. (1). The form of Eq. (6) is compatible with Eq. (5), and
hence we can easily take manufacturing variability and power sup-
ply noise into consideration in the same manner.

Unlike the process variation, the proposed method needs a spe-
cial consideration. In the case of spatial discretization, a grid, i.e. a
variable parameter, is assigned to a gate definitely. However, in the
case of temporal discretization, the correspondence to a variable is
sometimes obscure, because a switching transition may occur at the
boundary of temporal division. Furthermore, when the temporal di-
vision is rough, i.e. the number of time span is small, the voltage
difference between successive two time spans is large, which may
cause a large timing estimation error near the boundary. In order
to mitigate this error, we revise a weighted-average calculation to
cope with a case that input and output transition timings of a gate
are included in different time spans. Let tI and tO represent in-
put and output transition timings, where each time belongs to Span
#(m) and Span #(m + 1) respectively. First, we estimate tO with
the use of μrm which is the average delay in Span #(m), that is tO

= tI + μrm . Using these values, average μ′
r and the coefficient of

Eq. (6), a′
r,j , are recalculated by

μ′
r =

ΔtI

ΔtI + ΔtO
μrm +

ΔtO

ΔtI + ΔtO
μrm+1 , (8)

a′
r,j =

ΔtI

ΔtO + ΔtO
arm,j +

ΔtO

ΔtI + ΔtO
arm+1,j , (9)

where ΔtI is the time from tI to the boundary time, ΔtO is the
time from the boundary time to tO , μrm+1 is the average delay of
Span #(m + 1), arm,j and arm+1,j are the coefficients of Eq. (6)
in Span #(m) and Span #(m + 1), respectively.

5. EXPERIMENTAL RESULTS
This section demonstrates experimental results. We first validate

the statistical modeling of power supply noise, and then verify the
accuracy of the proposed timing analysis.

5.1 Experimental conditions
For constructing the proposed model of power supply noise, we

use an FPU circuit and a tiny64 processor[13], as noise generators.
These circuits were synthesized by a commercial logic synthesizer
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Figure 8: Power network of test circuit.

and placed and routed by a commercial tool with a 90nm standard
cell library. The circuit sizes are 39k and 20k gates respectively.
We attached a power/ground network shown in Fig. 8 to each noise
generator circuit and simulated the power supply noise. A flip chip
package with bump connections is assumed. Input vectors of 2000
clock cycles are given to each circuit. The simulation results are
used for PCA including correlation matrix calculation. Please note
that other methods for power noise estimation can be used, though
a fast circuit simulator is used in this paper.

We implement block-based SSTA and Monte Carlo simulation in
C++ and perform them for ISCAS85 benchmark circuits, a 64-bit
multiplier, an ALU circuit for vector operation and an H-tree for
clock distribution on a computer with Opteron processor 2.4GHz
and 16GB memory. These circuits except H-tree were synthesized,
placed and routed by commercial tools. In the H-tree, a single path
is selected and its jitter is evaluated. The power supply noise of the
FPU circuit or the tiny64 processor described above is given to the
benchmark circuits.

5.2 Validation of statistical modeling of power
supply noise

5.2.1 Distribution of power supply noise
We here show a distribution of power supply voltage as an ex-

ample. We choose a distribution of power supply noise that is rel-
atively far from Gaussian (Fig. 9), whereas a large portion of vari-
ables are close to Gaussian. Figure 10 is the normal probability plot
of Fig. 9. In the case of a normal distribution, all dots are placed
on the diagonal line. When the dots are far from the diagonal line,
the distribution is much different from Gaussian. In Fig. 10, many
dots are not on the diagonal line, which means the distribution is
different from Gaussian, as shown in Fig. 9.

On the other hand, the variable transformed by Box-Cox trans-
formation approaches Gaussian (Fig. 11). In the normal probabil-
ity plot of Fig. 12, the dots are closely placed to the diagonal line,
which means the Gaussianity is much improved. We experimen-
tally reveal that SSTA results are accurate compared with Monte
Carlo analysis, which will be discussed later in Section 5.3. We
thus conclude that orthogonalization with PCA for power supply
noise is reasonable.

5.2.2 Variable reduction rate
When the correlation between random variables is high, the orig-

inal distribution can be reproduced with a small number of PCs.
This section discusses how many PCs can be reduced. When we
reduce the number of PCs, a metric called cumulative proportion is
used[18]. The cumulative proportion is expressed as

cumulative proportionk′ =
1

n

k′X
j=1

λj , (10)
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where n is the number of the variables. As the cumulative propor-
tion approaches 1, the original distribution is well reproduced.

Figure 13 shows the proportion of the first PC (i.e. cumulative
proportion1) when the division number is changed. The solid line
shows the relationship between the spatial division number and the
proportion of variance in the case that the temporal division within
a cycle is not executed. The strongly-correlated variables allow
the first PC to keep high proportion. On the other hand, the bro-
ken line gives the result when the temporal division number varies
while keeping the spatial division unchanged. The increase of tem-
poral division number does not affect the proportion very much,
because the parasitic capacitor in the chip smooths power supply
noise and strengthens temporal correlation. Furthermore, if inten-
tional decoupling capacitance is inserted, the spatial and temporal
correlation of power supply noise becomes strong, and the model-
ing efficiency improves further. Power noise also has correlation
with ground noise. Therefore, even when the number of variables
is very large, a small number of PCs can achieve high cumulative
proportion. Let us show an example. Suppose the spatial and tem-
poral division number of the difference between power and ground
are 10×10 and 10 respectively. We examine the number of PCs
whose cumulative proportion exceeds 90%. Only six PCs are ca-
pable of attaining the target value, though the total number of vari-
ables is 1000. In this instance, more than 99% of the variables
are reducible, which helps to reduce computational cost of SSTA,
because the complexity is proportional to the number of principal
components[1].

5.2.3 Adaptive spatial discretization
We show an example that the adaptive spatial discretization ex-

plained in Section 3.1 is applied to FPU. In this experiment, thresh-
old values of average and standard deviation used for the equivalent
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Figure 14: Adaptive spatial discretization.

partition checking are set to a tithe of differences between the max-
imum and the minimum values in the whole area, and the threshold
of correlation coefficient is set to 0.9.

Figure 14 shows the result of the adaptive discretization. In this
case the number of divided area is 142. The region where voltage
is fluctuating locally is discretized finely. If all the area is divided
with the finest resolution, the division number becomes 840. As
mentioned in Section 3.2.3, the complexity of PCA is O(n3), and
hence the variable reduction from 840 to 142 corresponds to up to
over 200x cost reduction of PCA.

5.3 SSTA results for power supply noise
We first verify the accuracy of the proposed timing analysis

method. In this experiment, the numbers of spatial and temporal
division are set to 10×10 and 10, respectively. Here, we perform
Monte Carlo by using the noise information of 2000 cycles that is
the same with the information given to PCA. Noisy power volt-
age waveforms of each cycle is are given for all cells considering
the placement. The delay of each cell is calculated with the voltage
value corresponding to the cell position and switching timing. With
these gate delays, conventional STA is performed and the circuit
delay of each cycle is obtained. Therefore, the number of Monte
Carlo evaluation is 2000. The Monte Carlo result does not include
the errors that originate from discretization, PCA for incomplete
Gaussian distribution and SSTA operation. The results of Monte
Carlo are compared to those of SSTA as ideal solutions.

Table 2 lists the average and standard deviation of the delay
acquired by SSTA with and without Box-Cox transformation and
Monte Carlo simulation. We can see that the proposed SSTA with
and without Box-Cox transformation estimates the timing accu-
rately. The estimation error of the average delay is 0.465% and
that of the standard deviation is 14.4%. The accuracy improvement
due to Box-Cox transformation is not significant, but it reduces the
estimation error of standard deviation from 14.4% to 12.7%. The
effect of Box-Cox transformation is limited, because most variables
are originally close to Gaussian. When the noise information of
tiny64 processor is given, the errors of average and standard devi-
ation are 0.566% and 19.7% respectively. The proposed method
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Table 2: Accuracy of timing estimation (FPU).
SSTA w/o SSTA w/o - MC SSTA w/ SSTA w/ - MC Monte Carlo delay

circuit # cells Box-Cox trans. MC Box-Cox trans. MC (MC) w/o noise
avg (ps) sd (ps) avg (%) sd (%) avg (ps) sd (ps) avg (%) sd (%) avg (ps) sd (ps) (ps)

c432 232 843.1 11.1 0.522 7.58 842.7 10.8 0.478 4.21 838.7 10.4 716.1
c1355 329 477.8 4.98 1.32 28.2 477.6 4.90 1.27 29.4 471.6 6.94 399.7
c1908 387 737.7 15.0 0.548 27.3 737.1 14.6 0.472 24.1 733.6 11.8 619.3
c6288 3382 2755 35.3 0.331 10.3 2754 34.9 0.370 9.15 2764 32.0 2371
c7552 2070 725.7 13.6 0.121 17.5 725.4 13.2 0.172 13.8 726.6 11.6 608.9

multiplier 41629 1839 19.9 0.102 8.45 1839 19.7 0.0969 7.23 1837 18.3 1590
ALU 14655 1075 12.3 0.192 3.79 1075 12.2 0.216 2.87 1077 11.8 907.0

H-tree 7 194.2 1.53 0.584 11.8 194.2 1.52 0.576 10.8 193.0 1.37 171.7
average - - - 0.465 14.4 - - 0.456 12.7 - - -

Table 3: Accuracy and #PCs (multiplier, tiny64).
#PCs c.prop.(%) avg(ps) sd(ps) CPU time(ms)

1 84.2 1843 0.384 164
2 92.9 1843 3.16 166
4 95.8 1843 3.71 180
8 98.4 1843 4.07 205
16 99.5 1843 4.09 238

2000 100 1843 4.09 11800

helps designers to quantitatively know how the circuit delay fluctu-
ates depending on input vectors in a systematic way.

The Monte Carlo results show the worst-case delay does not
always occur when power/ground noise is maximum. In circuit
c1355, even when the supply voltage, which is averaged tempo-
rally within a clock cycle and spatially within a block area, is the
minimum, the circuit delay is not the largest. This situation indeed
corresponds to the case of the 970th longest circuit delay among
2000 evaluated cycles. Thus, finding the maximum power/ground
noise is not sufficient for timing verification.

Table 3 shows the relation between the number of PCs (cumula-
tive proportion) and delay estimation accuracy for 64-bit multiplier.
The spatial and temporal division number are 10×10 and 10 re-
spectively and the noise generator is tiny64 processor. In this case,
the result with only eight PCs is very close to that with all PCs,
which enables considerable variable reduction. The CPU time is
reduced from 11800ms to 205ms by 98.3%.

5.4 SSTA result both for power supply noise
and manufacturing variability

We finally demonstrate that the proposed method estimates de-
lay distribution considering both dynamic power supply noise and
static manufacturing variability in a unified manner. In this exper-
iment, threshold voltage (Vth) is fluctuated. Its variation consists
of a spatially correlated constituent and a random fluctuation con-
stituent. As for the spatial correlation, we assume that the correla-
tion coefficient of Vth is given by a function f(x) = e−2x, where
xmm is the distance between two gates[19]. We suppose that the
magnitudes of both variational components are the same and the to-
tal standard deviation is 25mV, which is a typical value in a 90nm
process[19]. For the sake of simplicity, intra-gate fluctuation is not
considered in this experiment. We also assume that manufacturing
variability and power supply noise are uncorrelated in this exper-
iment, though this mutual dependence is analyzed in [20]. The
mutual correlation can be modeled by PCA in nature, as long as
we can obtain the statistical data. Here, this experiment aims to
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Figure 15: CDF of delay distribution considering process and
power supply fluctuation.

demonstrate the feasibility that the proposed method can cope with
manufacturing variability and power supply noise in a unified ap-
proach.

Figure 15 shows the delay distribution of a 64-bit multiplier in
the case that the spatial and temporal division numbers are set
10×10 and 10 respectively. The power supply noise of FPU is
given. The difference of two distributions at 50% cumulative den-
sity is 4ps, and it is a quite small error, which means the proposed
method well copes with both variabilities. If the timing margin 3σ
is set for each variation individually, total margin becomes 142.7ps.
However, simultaneous consideration of the variations by the pro-
posed method reduces timing margin to 104.8ps. This result indi-
cates a possibility that the proposed method gives a new sign-off
criteria both considering manufacturing and supply voltage fluc-
tuation, though several studies are needed before applying it to a
practical design.

6. CONCLUSION
In this paper, we proposed SSTA considering dynamic power

supply noise with orthogonalization technique. We confirmed
that dynamic power/ground noise could be modeled statistically
with PCA though the distribution of power supply voltage was
not rigidly Gaussian. The experiments showed that the proposed
method estimated delay variation due to power supply noise ac-
curately. We experimentally demonstrated that a small number
of principal components obtained by PCA were capable of accu-
rate delay estimation thanks to spatial and temporal correlation of
power supply noise.

7. ACKNOWLEDGEMENT
This work is supported in part by Semiconductor Technology

Academic Research Center (STARC), New Energy and Industrial

166



Technology Development Organization (NEDO) and VLSI Design
and Education Center (VDEC).

8. REFERENCES
[1] H. Chang and S. Sapatnekar, “Statistical Timing Analysis

under Spatial Correlations,” IEEE Trans. CAD, Vol. 24,
No. 9, pp. 1467–1482, 2005.

[2] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker,
and S. Narayan, “First-order Incremental Block-Based
Statistical Timing Analysis,” in Proc. DAC, pp. 331–336,
2004.

[3] J. Singh and S. Sapatnekar, “Statistical Timing Analysis with
Correlated Non-Gaussian Parameters using Independent
Component Analysis,” in Proc. DAC, pp. 155–160, 2006.

[4] K. Shimazaki, M. Fukazawa, M. Nagata, S. Miyahara,
M. Hirata, K. Sato, and H. Tsujikawa, “An Integrated Timing
and Dynamic Supply Noise Verification for Nano-meter
CMOS SoC Designs,” in Proc. CICC, pp. 31–34, 2005.

[5] M. Hashimoto, J. Yamaguchi, T. Sato, and H. Onodera,
“Timing Analysis Considering Temporal Supply Voltage
Fluctuation,” in Proc. ASP-DAC, pp. 1098–1101, 2005.

[6] J.-J. Liou, A. Krstic, Y.-M. Jiang, and K.-T. Cheng, “Path
Selection and Pattern Generation for Dynamic Timing
Analysis Considering Power Supply Noise Effects,” in Proc.
ICCAD, pp. 493–496, 2000.

[7] G. Bai, S. Bobba, and I. N. Hajj, “Static Timing Analysis
Including Power Supply Noise Effect on Propagation Delay
in VLSI Circuits,” in Proc. DAC, pp .295–300, 2001.

[8] D. Kouroussis, R. Ahmadi, and F. N. Najm, “Worst-Case
Circuit Delay Taking into Account Power Supply
Variations,” in Proc. DAC, pp .652–657, 2004.

[9] S. Pant and D. Blaauw, “Static Timing Analysis Considering
Power Supply Variations,” in Proc. ICCAD, pp .365–371,
2005.

[10] S. Pant, D. Blaauw, V. Zolotov, S. Sundareswaran, and
R. Panda, “A Stochastic Approach To Power Grid Analysis,”
in Proc. DAC, pp. 171–176, 2004.

[11] Y. Jiang and K. Cheng, “Analysis of Performance Impact
Caused by Power Supply Noise in Deep Submicron
Devices,” in Proc. DAC, pp. 760–765, 1999.

[12] H. S. Kim and D. M. H. Walker, “Statistical Static Timing
Analysis Considering the Impact of Power Supply Noise in
VLSI Circuits,” in Proc. MTV, pp. 76–82, 2006.

[13] OPENCORES.ORG, http://www.opencores.org/. in Proc.
ASP-DAC, pp. 353–358, 2001.

[14] R. M. Sakia, “The Box-Cox transformation technique: a
review,” The Statistician, Vol. 41, pp. 169-178, 1992.

[15] The R Project for Statistical Computing,
http://www.r-project.org/.

[16] E. Chiprout, “Fast Flip-chip Power Grid Analysis Via
Locality and Grid Shells,” in Proc. ICCAD, pp. 485–488,
2004.

[17] M. Hashimoto, J. Yamaguchi, and H. Onodera, “Timing
Analysis Considering Spatial Power/Ground Level
Variation,” in Proc. ICCAD, pp. 814–820, 2004.

[18] I. T. Jolliffe, “Principal Component Analysis,” 2nd Edition,
Springer, 2004.

[19] H. Masuda, S. Ohkawa, A. Kurokawa, and M. Aoki,
“Challenge: Variability Characterization and Modeling for
65- to 90-nm Processes,” in Proc. CICC, pp. 593–599, 2005.

[20] P. Ghanta, S. Vrudhula, S. Bhardwaj, and R. Panda,
“Stochastic Variational Analysis of Large Power Grids
Considering Intra-die Correlations,” in Proc. DAC,
pp. 211–216, 2006.

167


